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The problem of stability in probability of stochastic systems of differential 
equations in the large is considered. A stability criterion based on the. 
use cf two Liapunov functions [l] is given. 

The idea of using two Liapunov f;nctlons is due to Chetaev [23, In the 
case of ordinary differential equations, the stability criteria constructed 
by using two functions were proved in [3]. 

The theorem proved below for stochastic systems is analogous to thatwhich 
was proved for ordinary differential equat-ions [4]. 

1. Let the differential equations of perturbed motion be 

ds / dt = f (t,* x, y (t)) (I.11 

where x Is an n-dimensional vector of the phase coordinates of the system, 
the vector function y = {I,,..:, 1,) Is continuous in all the variables In 
the domain 

-oc<<-'i<+cQt t>o, YEY (1.2) 

and satisfies the Lipschitz ccnditions in the x,,@ var;ables in this domain 
and isbounded for all YEY in each finite domain 

The function p(t) describes a Markov random process [5] which we shall 
assume to be either purely discontinuous ([t;], p.292) or continuous (C6], 
p-284). Let us limit ourselves to the consideration of only the scalar 
function u(t). The results are generalized to the case when y(t) Is an 
~-dimensional vector without essential changes in the reasoning. 

Under certain sufficiently broad assumptions [5], a continuous Markov 
stochastic process can be considered as the solution of the diffusion equa- 
tion 

dy / dt = m (t, y) ‘i- u (t, y) d4 i dt 

where p(t) is a Wiener- process, *i.e. a Gaussian process with independent 
increments satisfying conditions 

Ai [4 (Ct) - q (tl,] == 0, M [q (t?) - q (tl)]” = .! fl -- tz j 
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(for any t1>,0, ts>, 0). 

Questions Of the stability of stochastic systems have been considered in 
a number of works [7 to 111. 
used herein. The case when 

The definition and notation used in [ll] are 
y(t) Is a homogeneous Markov chain with a flnlte 

number of states is considered in [ll], however, the definitions and results 
l,rhich are used later remain valid even under more general assumpt+ons. 

Let us present certain definitions. 

Definition 1.1. The solution x = 0 of the system (1.1) will 
be called probabilistically stable If for any number c > 0, p > 0 as small 
as desired, it Is possible to indicate a 6 > 0 such that for arbitrary 
initial data satisfying condition 

the inequality 

p t II 22 (d II < &, t > te 1 II z (44 il< 6, Y (4 E Yl > 1 - P (1.4) 

will be valid. 

The symbol P(,4/6] denotes the conditional probability of the event A. 

Equations (1.1) generate a probabilistic Markov process [x(t), k(t)] 
which we may consider separable ( 

\ 
53, p.53). Then the expression on the 

left-hand side of the Inequality 1.4j has meaning. 

Definition 1.2. The solution n = 0 of the system (1.1) 
will be called asymptotically stable In the large, If it Is stable in the 
sense of definition (1.1) and If, no matter what the tounded domainI\rll<~c 
and the numbers r>O, 0 <p < 1, 0 <q < 1,it is possible to indicate a 
bounded domain //scI( 2 ~~ and a number T > 0 such that conditions 

P i I/ x (4 II < H, t > 4, / II ze II < f-f,, YO E Y1 > 1 - P (1.5) 

P { II x (4 II > ‘r, t > t, + T i II zo I/ < He, YO E Yl> 1 - rl (1.6) 

will be satisfied. 

The meaning of this definition Is the following: if the solution x = 0 
Is asymptotically stable in the large, then for any Initial condition (~c,k,,) 
the motion x(t) will be In a certain bounded domain /IxlI < H, at t > t, 
with a probability as close to 1 as desired. Hence, starting with a certain 
sufficiently large time to+ T , the motion trajectory will drop into as 
small a neighborhood of the origin of coordinates as desired and will remain 
there for all t > t, +T with probability as close to 1 as desired. 

Note 1.1. Definitions (1.1) and (1.2) agree with the correspond% 
definitions of [ll] under the condition of discontinuity of realiZatiOn 

assumed there. 

N o t e 1.2 . The stability condition analogous to inequality (1.4) can 
be selected from Definition 1.1 in the form 

lim {P [Sup Ij x (t) 11, to d t < ml > E / X (bJ = loI = 0 for 2) -+ 0 (1.7) 

Such a definition for stablllty Is given by Khas'mlnskii [lo]. 

2. The sufficient conditions for stability of stochastic systems may be 
given in a form analogous to the theorems of the second Llapunov method fo= 
ordinary differential equations [lo and 111. In particular, If a posltlve- 
definite fur&ion u(t,x,y) admitting an Infinitely small uPPer and an 
infinitely large lower limit ([12], p.36) exists for Equations (1.1) and 
whose derivative dflu]/dt Is negative definite * by Virtue of the system 
(l.l), then the solution x = 0 is asymptotically stable In the large. 

* See opposite page. 
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However, justas for determined systems, It Is sometimes possible to con- 
struct a function for stochastic systems which will be positive definite, 
and will admit an Infinitely small upper and an Infinitely large lower limit, 
but whose derivative Is only a negative function. Therefore, It Is lmpossble 
to use the theorem mentioned above in this case. 

Theorem 4 from [4] can be applied to determined systems In a slmllar situ- 
ation. The theorem presented below Indicates the condition when the asymp- 
totic stability In the large of a stochastic system Is guaranteed by a 
function with a negative derivative. This theorem Is based on the use of 
two functions. 
c21. 

The Idea of using two Llapunov functions Is due to Chetaev 
Theorems on asymptotic stability for ordinary differential equations 

are proved in [3] by using two functions. 

Let us Introduce some definitions. 

Definition 2.1. Let C be an open domain In the space (x,). 
Let the function $(t,x,p) be designated positive-definite in the domain 
0 X Y If for any numbers c > 0,x> c > 0, a 6 > 0 can be Indicated 
such that 

$(t,r,Y)>6 for t3,0, {x,y)~GXl’; ~</Izji<lIi (2.1) 

De flnitlon 2.2. 
satisfies conditions A(G) If 

Let us say that the function j'(t,x,y) 

a) It Is bounded for allt>O In any finite domain 

ii z /I < H 3 YEE (2.2) 

b) The derlvatlve d,y[f/at of the function F(t,x,Y) by virtue of the 
system Is bounded in any domain (2.2), I.e. Id#[F]/dtl<K . 

c) By virtue of Equations (1.1) the derivative d.M[F]/dt Is positive 
definite In the domain 0 X Y . 

The following theorem Is valid. 

Theorem 2.1. Let these conditions be satisfied for Equations 
(1.1) defined In the domaln.(l.2). 

a) There exists a positive-definite function u(t,x,Y) admitting an' 
Infinitely small upper and an Infinitely large lower limit, I.e. conditions 

lim u (t, I, y) = 0 for r-+0, lim v (t, 2, y) = 00 for z- 00 
are valid uniformly In t and I/ . 

b) The derivative dM[u]/dt satisfies condition 

dM [u] / dt < - 0 (z) $ 0 

by virtue of the system (l.l), where the fun&Ion ip(x) Is continuous In 
the domain llxll-< H . 

c) The set 4 of points where i(x) = 0 (except the point x = 0) IS 
Internal with respect to a certain open domain GI Q . 

d) There exists a function F(t,x,u) satisfying conditions A(G) . 

* The derivative dMu]/d$ has the following meaning at the point t = 7, 
x = 5 , I/ = q ([ll], English version p.1229) 

dM Iv1 
-= ,:y, t--Z dt -!- {M [v (t, x (t), Y (t)) - v (r, & $1 / E, 9) 

and Is determined by the lnflnlteslmal operator 1133 of the Process [x(t), 
y(t)). 

The quantity dHv]/dt ma be Interpreted as the average value of the 
derivative of the function v t,x,u) 9 along all realizations (x(m,t),v(w,t)), 
issuing from the point (5,~) at the time 7 . 
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Then the unperturbed motion x = 0 
stable In probability In the large. 

of the system (1.1) 1s asymptotically 

Proof. 
o<y< 1 . 

Let us take the arbitrary numbers ,y, > 0, E .c x0, 0~ v< 1, 
BY means of these numbers let us determine two numbers H > o and 

E, > 0 from conditions 

j-up (' ((,,. "/,. ,/,,) 1 JO Ii .e II,,, !I,: F 1.1 < fl [itIE c :/, x, !/),I; .r ~I -r_ Ff, !I C ET, -ll>t,] (2.13) 

[ill!) i’ (t, .I‘, y), I’ ~ ; F,, !, C Iv, t 3 t,,) ._= 

/ ’ 2 y . . [iIll' c (i, J'. j/j. .C' i’ >, P. y E !?, ! > f”l (2. ‘t) 

As has been shown in [II], 
the validity of the relations 

by virtue of the conditions of the theorem, 

I’/ L rl’ (1) ‘, < H, t :a I” ,I .ro /I ,I no, /Jo E I?/ > 1 - IL (1.5) 

P { /I S (t) ‘~ > F, t 2 T, ,’ :~ s (T) ‘~ ., .F j, (Tj E 1-i > t - ’ ~, (2.6) 

follows from these Inequalities. 

NOW, It IS sufficient for us to show that for any point (x,,,~,) from 
the domain 

!I “0 1: -- II,,. !/” t 1~ 

a the T . /,,, Is found for wh!.ch the Inequality 

I' ; /( J’ (i) (/ f, :, .I‘0 II,. y. ‘2 1.; ,’ I ~-. ’ L ; ~- ,I :L’.i) 

Is satisfied since In this case condition 

I' ; .i’ (l) ‘<t‘, 1 ;Z- T ;: I’,) ; ‘; /I,,, !lo E 1-I ; 1 --. !, - I’ p.8) 

would be satisfied because of the stability In probability and (2.6). 

Let us prove the Inequality (2.7) by contradiction. Let (2.7) not be 
satisfied, then a point [x,,,~,] Is found such that for each ! _ -- 
Inequality 

I' {I; ,’ r/j > Cl, ~ x0 81 11,. 11, cr 1.: 1 2 ‘( p 
will be valid. 

By virtue of the stability of the system, a h> 0 can now be 
by means of the numbers y>O and E,> 0 , such that for each L 

I, the 

('J 'J) _.. 

determined 
: !(, con- 

(".I{ I) 

would be satisfied. 

The relation 

results from (2.9) and (2.10). 

In fact, If (2.11) were not satisfied, tilen condition 

P {'x (/) > h. i : /,, .f,), yu) : lifll /j ; 0’ (0 .> h, ‘0 a_ I ‘0 .I’” j/,)) ” , ‘C }L 
,I ..-, 

would hold. 

But It IS then possible to Indicate so large a value acZ t, that 

Z'J .<‘I/) _. , 0, /,, -; I -’ 0” J‘“, !/<,} -< :’ ” .( L, \ I/ !I r:. 111, 

Let T denote the first time the trajectory r(t) hits the Surface 

IjxII = b , we will then have for t > a0 

P { d (!) ;-- I-'! '0. !!") _ $1.1:;) 

> t’, .c‘ (Td) ;, j, (T>) = 11) 1’ {J‘(T~;) E *i;, 
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Here the probabilistic stability property is used which is analogous, in 
a certain sense, 

Xeifuture. 

to the strict Ma?kov property [13], I.e. the inequality 
s used under the assumption that tb Is a random time independent 

The inequality obtained contradicts condition (2.9). Hence, the validity 
of the relation (2.11) follows. Comparing (2.5) and (2.11), we obtati the 
following estimate: 

P {r, < // L (t) /j <H, ‘ I& t, / .LQ, yo} > ‘,,: (” 14) 

Let us show that (2.14) contradicts the conditions of the theorem. To do 
this, let us consider the domains D and E defined by the equalities 

D = Gil (6 <I/ x ii< HI, E = 18 < jj z Ii < W \ fi 

Then positive constants ka and mz can be indicated such that the 
relations 

Together with the process [x(t),v(t)], which Is a solution of Equations 
(l.l), let us consider the auxiliary stochastic process {r*(t),y*(t)). 

Let us assume that the realizations (x*(t,w),y*(t,w)) of the stochastic 
the corresponding realizations 

only until 6 < I/x(t,w)i < u. 
Is the time of the first emergence of the realization beyond 

the boundary of the domain under consideration, 
the realization {x*(t,w),y*(t,w)) 

we will then consider that 
does not exist for t > t (w). 

is a certain scalar function, each realization 
enerates a realization of the random function v(t) with 

the appropriate probability distribution, where we assume that 

‘F (t,o) = 
i 

CF (t, x-3 (t* (01, !I (t, (1))) for 1, < t < 1 ( 0) 

‘p (t (WI. 7 (t ((I)), co)) y (f (CU. cu)) for t > t (0) 
(2.17), 

Let ‘p( = 131 [q (t) / TO. l/01 be the mathematical expectation of the random 
function cp(t) . Then the equality * 

is valid. 

Let us introduce the notation 

I’ {.r* (t) E E so, yo) = p (t) 

Then we will have by virtue of (2.14) 

(2.18) 

(2.19) 

(2.20) 

* The equality (2.18) ‘is proved rigorously on the basis of the theory of 
lnflnlteslmal operators of Markov processes [13]. Certain ccnslderations 
for the derivation of this formula will be given below. 
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Taking account of (2.15) and (2.18), we have 

3= M[q /x,,,y,]<-k*p(t) dt 

Integrating and taking Into account that z+>O for all t>t,, we obtain 
co 

s 
p (t) dt < .j$- (%I = v(h, %r Ye)) (2.21) 

10 

On the other hand, taking account of conditions (2.16) and 2.20) .S well 

as the boundedness of the derivative dMF]/dt In the domain 
have 

t 2.2), we rlll 

$ = M[$$+,,Y,,]>m2 [&Q(t)]+(t) 

Integrating this Inequality and taking account of (2.16), we obtain 
llm F, =OD as t - OD , which Is Impossible since Fr Is a bounded function. 
The contradiction obtained proves the validity of (2.7) and, consequently, 
of Theorem 2.1 . 

Let us set down the proof of equality (2.18). 

Let 2 denote the o en domain 6 < llxll < x . Let us take the arbitrary 
number Oc v<4(~-6 P and let us define a closed domain s by conditions 

S = (6 i- v <[I x 11 <H - Y} 

Let us CalCdate the increment pip, In the function 

'Pi = M Icp (t, x* (t), Y* (t)) / x.9 YOI. 

To do this, let us consider the following incompatible events which generate 
a complete group. 

The event A the solution 
of the time l&e&al 

(r*(t),u*(t)) Is not terminated at any point 
(tc ,tl, whereax* (t) = x (t) E S. 

The event B the solution {x*(t),u*(t)) Is not terminated at any point 
of the time inteival (t, , t] but x* (t) = z (t) E L\S. 

The event C , the solution (x*(t),v*(t)) terminates at a certain time 

r E (to, tl 
Then we will have (for At > 0) 

Aq+ = cpt+At - rp, == hf [cp (t + At) - q~ (t) i TQ. y,A] + 

+ M [tp (t + At) - cp (t) / x0, yo, I31 -I- M ltp (t + Ad - ‘P (d i ~0, T/O* cl (2.9 

Let us estimate each of the terms. 
(1.1) satisfy the Llpschltz conditions, 

The right-hand sides of Equations 
hence with the compliance of condl- 

tiOn A It Is possible to Indicate so small a value of At that the solu- 

tion Ex*(t),y*(t)I will not terminate even in the time intkval (t, t+At . 
Then applying the formula of repeated mathematical expectations ([S], P.40 1 , 
we will have 

M IV (t + A4 - 'F (1) / -TO. Y,, Al = M [M [(P (t + At, x (t + At), y (t + At) - 

- T (t, z (d, y (t))l % Cd = E E s, y (t) = 

= q E Y/To, yo, ~]]=n~[d~llr,,y,,A]Ar+o(A~) (',.2:1)o 

The estimate ( x Is a certain constant) 

1 M [cp (t + At) - 'P (4 / xl, ye, Bl t f h'At P Ix* (1) EL \S: 2.1 yeI+ o( At) (2.24) 
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is valid for thz second term on the right-hand side of (2.22). 

Finally, It is clear from the definition of the function m(t) that 

M [cp (t + At) - cp (t) / 20, Y,, Cl = 0 (2.25) 

Hence, it follows from the estimates (2.23), (2.24) and (2.25) that the 
function q+ = M [cp (0 / 2., yOl is continuous on the right in t uniformly in 
the domain t>t, and, consequently, It is continuous in this domain. Now 
taking into account that 

lim P Ix+ (t) E L \ S / x0, yol = 0 for v * 0 

we obtain the equality (2.18). 

3. As an example, let us consider the second order equation 

x" + ax' + bx = 0 

which Is equivalent to the system 

(3.i) 

2' = 2, z' = - bx - az (3.2) 

Here a(y) and b(y) are known bounded functions of the variable I/ 
and' Y(t) describes a homogeneous Markov stochastic process with a finite 
number of states U[Y,,...,y,) , the elements of the transition matrix 
pi,(At) are given within the time At by Formulas 

pij (At) = aij At + o (At) (i # j, aij = const, i, j = 1, . . ., r) (3.3) 

Here p$,(At) is the probability of the change in values Y/I- Y, during 
the time At . 

It Is known that compliance with the Inequalities a> 0 , b> 0 will be 
the necessary and sufficient condition for stability of the system (3.2) 
with c = const and b = const In the determined case. Let us assume that 

b (y) > 0 for y E Y (3.4) 

Let us introduce the notation 

c(yjJ = flk, b(Yk) = 5, > 0 (h- ? I: . . ., r) 

Now, let us consider the positive definite function 

,L 
2, (x, z, Ir) = x2-t rzc 

k 
(3.5) 

To evaluate dMv]/dt by virtue of Equations (3.2) at the point (x,z,~) 
let us use the ecuallty ([ll], English version p.1229) 

ddf [VI _ au 
____ - zz + 2 (-- bkx - n,z) + 2 akj [V (X, k, j) - 2, (2, Z, k)] lit 

(3.6) 

j, li 

After some transformations we will have 

(3.7) 

Let us now require compliance with conditions 

(k = 1, . . .,r) 

us 

Then dMb]/dt will be negative, it may vanish on the line 2 = 0 - Let 
construct the function 
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F(x, 2) = - zz (3.9) 

Then a domain G 

4 3 
M[F /dt 

containing the line p = 0 may be indicated such that 

3.2 
will be positive definite in this domain C by virtue of Equations 

since for 2 = 0 

dM [Fl ~ = bkx2 > 0 
dt 

Thus for the asymptotic stability In probability in the large for the 
system (3.2), compliance with conditions (3.4) and (3.8) is sufficient. It 
is seen, in particular, from these conditions that the asymptotic stability 
In probability in the large may hold even when certain of the possible values 
of a, will be.negative or zero. 

The author is grateful to N.N. Krasovskii who proposed the topic and 
expressed a number of valuable comments. 
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