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The problem of stabllity in probability of stochastic systems of differential
equations in the large is considered. A stablility criterion based on the,
use cf two Liapunov functions [1] is gilven.

The idea of using two Liapunov functioms is due to Chetaev (2. In the
case of ordinary differential equations, the stabllity criterla constructed
by using two functions were proved in [3].

The theorem proved below for stochastlic systems is analogous to that which
was proved for ordinary differential equations [4].

1, Let the differential equations of perturbed motion be

dz [ dt=f(ty 2, y (1)) (1.1

where x 18 an n-dimensional vector of the phase coordinates of the system,
the vector function f = {f# ,..:, f,} 1s continuous in all the varlables in
the domain

— oo < x; <+ oo, t >0, y&eY {1.2)

and satisfles the Lipschlitz conditions in the x,,y variables in thls domain
and 1is* bounded for all ¥&Y 1in each finite domain

te T N (=) = max {|z.], ..., { x,n]}).

The function y(¢) describes a Markov random process [5] which we shall
assume to be either purely discontinuous {[6], p.292) or continuous ([6],
p.284). Let us limlt ourselves to the consideration of only the scalar
function y(t). The results are generallized to the case when y(t) is an
m-dimensional vector without essential changes in the reasoning.

Under certain sufficiently broad assumptions [5], a continuous Markov
stochastic process can be considered as the solution of the cdilffusion equa-

tion
dyldt=m(t, y)+ c(t, y)dy/dt

where g(t) is a Wiener process, "i.e. a Gaussian process with independent
increments satisfying conditions

Mg {ts) — g (tn] =0, Mig(t) — qUP =1t — t2]
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(for any t; >0, t:>>0).

Questions of the stability of stochastlc systems have been considered in
a number of works [7 to 11]. The definition and notation used in [11] are
used herein. The case when y(t) 1s a homogenecus Markov chain with a finite
number of states 1s considered in [11], however, the definitions and results
vhich are used later remain valid even under more general assumptions.

Let us present certain definitions.

Definiltion 1.1 . The solution x = O of the system (1.1) will
be called probabllistically stable if for any number ¢ > O, p> 0 as small
as desired, 1t 1s possible to Indicate a § > O such that for arbitrary
initlal data satisfying condition

2 (t) | <8, y(t) €Y (1.3)

the inequality

Pilz(<e, t24/[z)I<, y)EYI>1—0p (1.4)
will be valild.
The symbol pP{4/B}] denotes the conditional probability of the event 4.

Equations (1.1) generate a probabilistic Markov process {x(¢), y{(¢)}
which we may consider separable (%5], p.53). Then the expression on the
left-hand side of the inequality (1.4 has meaning.

Definition 1.2 . The solution x = O of the system (1.1)
wlll be called asymptotically stable in the large, 1f it 1s stable in the
sense of definition (1.1) and 1f, no matter what the bounded domain| z[ < H,
and the numbers 7 >0, 0 <p<{1, 0< g< 1,1t 1s possible to indicate a
bounded domain |lx|| < #, and a number 7 > O such that conditions

Pila@h<<Hy t>tyl/lz| <Hp yoEY}>1—p (1.5)

P{le@ >, t>t+T/|e<Hypyp &Y} >1—9q (1.6)
willl be satisfied.

The meaning of this definition is the following: 1if the solution x = O
1s asymptotically stable in the large, then for any initial condition (xo,%)
the motion x(¢) will be in a certain bounded domain |x|| < 7, at ¢ > t,
with a probability as close to 1 as desired. Hence, starting with a certain
sufficiently large time t,+ I , the motion trajectory will drop into as
small a nelghborhood of the origin of coordinates as desired and will remain
there for all ¢t > ¢, +T with probability as close to 1 as desired.

Note 1.1 . Definltions (1.1) and (1.2) agree with the corresponding
definitions of [11] under the condition of discontinuity of realizatlon
assumed there.

Note 1.2 . The stability condition analogous to inequality (1.4) can
be selected from Definition 1.1 in the form

lim {P [sup [jz () [, toSt<{oel>e/z(ty) =z} =0 for zg—0 (L.7)
Such a definition for stability 1s given by Khas'minskil [10].

2, The sufficient conditlons for stabllity of stochastic systems may be
given in a form analogous to the theorems of the second Liapunov method for
ordinary differential equations [10 and 11]. In partlcular, if a positive-
definite function u(t,x,y) admitting an infinitely small upper and an
infinitely large lower 1limit ([12], p.36) exists for Equations (1.1) and
whose derivative gu{v]/d¢t 1s negative definite * by virtue of the system
(1.1), then the solution x = O 1s asymptotically stable 1n the large.

* See opposlite page.
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However, just as for determined systems, it is sometimes possible to con-
struct & function for stochastic systems which will be positive definite,
and will admit an infinitely small upper and an infinitely large lower limit,
but whose derivative 1s only & negative function. Therefore, it 1s impossble
to use the theorem mentioned above in thils case.

Theorem 4 from [4] can be applied to determined systems in a simllar situ-
ation. The theorem presented below indicates the condition when the asymp-
totic stabllity in the large of a stochastic system 1s guaranteed by a
function with a negative derivative., This theorem 1is based on the use of
two functions. The 1dea of using two Llapunov functlions ls due to Chetaev
[2). Theorems on asymptotic stability for ordinary differential equations
are proved in [3] by using two functions.

Let us introduce some definitions.
Definition 2.1 . Let ¢ be an open domain in the space {x,].
Let the function y(t,x,y) be designated positive-definite in the domain

¢ XY 1if for any numbers € > 0 , y> ¢ > 0, a § > O can be indlcated
such that

Y2y 28 for 120, {z, ) €EGXY; ez H 2.9)
Definittion 2.2. Let us say that the function F(¢,x,y)
satisfles conditions 4(g) if
a) It is bounded for all¢> 0 in any finite domain
izl < H, yEY (2.2)
b) The derivative dw[r]l/dt of the function p(t,x,y) by virtue of the
system is bounded in any domain (2.2), i.e. |dM[F1/dti< K -

¢) By virtue of Equations (1.1) the derivative 4w[F]/dt 1is positive
definite in the domain ¢ X Y .

The following theorem 1s valid.
Theoren 2.1 . Let these conditlons be satisfied for Equations
(1.1) defined in the domain.(1.2).

a) There exlsts a positive-definite function v(¢,x,y) admitting an
Infinitely small upper and an infinitely large lower 1limit, i.e. conditions

lim v (¢, z,y) =0 for z -0, lim v (¢, z, y) = oo for z — o
are valid uniformly in ¢ and y .
b) The derivative dm[v]/dt satisfies condition

dM [v]/ dt < — @ () < 0

by virtue of the system (1.1), where the function &(x) 1is contlnuous in
the domailn ||x||<< 7 .

¢) The set @ of points where &(x) = O (except the point x = 0) 1s
internal with respect to a certain open domain G 5 Q .

d) There exists a function F(t,x,y) satisfying conditions 4(g) .

* The derivative dM[v]/Ht has the following meaning at the point ¢ = 7,
x =€, y=n ([11], English version p.1229)

dM [v] . 1
dt = tEP:O t—1 {AI [2) (ty z (t)r K) (t)) — v (Ty gy n)] / gy n)
a?d)is determined by the infinitesimal operator [13] of the process {x(t),
y(t)}.
The quantity dwm[v]/dt may be interpreted as the average value of the
derivative of the function wv(¢,x,y) along all realizations {x(w,z),y(w,t)},
issuing from the point {g,n} at the time 1 .
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Then the unperturbed motion x = O of the system (1.1) is asymptotically
stable in probability in the large.

Proof . Let us take the arbitrary numbers Ho> 0, €< f,, O<u<1,
O<y< 1l . By means of these numbers let us determine two numbers g > O and
€, >0 from conditions

[~up ety rae e ol T s =Y << i o, e, e 2 Hy p SV, Aez)] (2.3)
fsup otr, ey, et Je,n =Y, 0 =] L
< Voarhnd e e el e v ENY, L2200 (2.4

As has been shown in [11], by virtue of the conditicns cf the theorem,

the validity of the relations
PU o T H, E 2ty fag) [ Hy g &Y >1— 0 (2.5)
Pijey ! >e,t 2, /e @) ey EY >1— 1y, (2.5)

follows from these lnequalities.

Now, it 1is sufficient for us to show that for any point ({x,,y,} from
the domain
u~’o‘i‘/i H,. e & Y
a time t -4, is found for which the inequality

L R S o I I R oo =070 >0 =V~ (2

[s
=~1
~

is satisfled since in this case condltion
L 1 B B R P N [ (2.8)

would be satisfied because of the stability in probability and {(2.6}.

Let us prove the inequality (2.7) by contradiction. Let (2.7) not be
satisfied, then a point {x,,y,} 1is found such that for each ! t, the
inequality

Pllctty, >e, oy Hepwe =Y 1,0 (2.9
will be valid.

By virtue of the stabllity of the system, a &> O can now be determined
by means of the numbers y>0 and ¢, > 0 , such that for each ¢ ./, con-
dition i ) o }

Py, e Jaig) 00, yity) =YY< g ¥ (2.1
would be satisfied.

The relation ‘ ‘
P{et) >0t >0, rgouay >4y7 -1 (2.11)

results from (2.9) and (2.10).
In fact, if (2.11) were not satisfied, tnen condition

p {"o ), > AT S Ly Ty Hob = line 7 ety > 0, 7o Tt Y Lo s Yot -t PRt
Hooem
would hold.
But 1t is then possible to indicate so large a value §,> ¢, that

Piowo(), 20, tg 70 Ty Cugo gy LT - (2.4

Let 1 denote the first time the trajectory x(¢t) hits the surface

lix|l =8 , we will then have for ¢ > g,
Plc(h oty rgitsd © 21
< 3 Plao(n >e . o(ty S (T == gD L (1) = ul,
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T E AN, T KO0/ gy yob P {2 () 1>, 1y s SOy g o} <L (2130
LMy ¥ p=151+

Here the probabllistic stabllity property is used which is analogous, in
a certain sense, to the strict Markov property [13], 1.e. the inequallty
(1.4) is used under the assumption that ¢, 1is a random time independent
of the future.

The inequality obtailned contradicts condition (2.9). Hence, the validity
of the relation (2.11) follows. Comparing (2.5) and (2.11), we obtain the
followling estimate:

P )| <TH, 2145 4y > 147 (2.14)

Let us show that (2.14) contradicts thé conditions of the theurem. To do
this, let us consilder the domalns 7 and £ defined by the equalities

D=GNOB<|zi<H,  E=@<|c|<m\D

Then positive cdnstants #%° and m® can be indicated such that the
relations
dM [2] B R o
Sup T,k €L,y EY, 13 g | = — K (2.15)

_dM [F]
me , v & D, yEY, 1> t,—’ = m?> (2.16)

will be valid.

Together with the process {x(t);y(t)}, which 1s a solution of Eguatlons
(1.1), let us consider the auxiliary stochastic process {x*(t),y*{¢)}.

Let us assume that the realizations {x*(¢,w),y*(¢,w)} of the stochastic
process {x*(¢),y*(¢)} exist and agree with the corresponding reallzations
{x(t,0),y(2 wg} of the process {x(¢),y(¢)} only until & < llx{t,u)! < =.
If ¢ = ¢ wj 1s the time of the first emergence of the realization beyond
the boundary of the domain under consideration, we wil]l then consider that
the realizatlon {x*(¢,w),y*(¢,w)} does not exist for ;> ¢(w).

Now, 1f oft,x,y) 1s a certain scalar function, each realization
{x*(t,w),y*(t,wj} generates a realizatlon of the random function «(¢) with
the appropriate probabllity distribution, where we assume that

¢ (2, x, (1, 0), y(t, o) for t, <<t <t(w

2.7
¢ (t(w), r (2 (0), W)y (¢ (0. ) for > 1 (0)

¢ (o) :{

Let @, = M [q (1) / x4, 4yl be the mathematical expectation of the random
function o(z) . Then the equality *

ag, 0 aM [q] |
1 - BN NN o
(\ dt )d!r‘»n ' JII_ dt / Tos .llo] (2.18)
1s valid.
Let us introduce the notation
Pe* (1) €L xg. ypt = p (1) (2.19)y

Then we will have by virtue of (2.14)

P{*(ED / zgyd =>Vr— p () (2.20}

* The equality (2.18) '1s proved rigorously on the basis of the theory of
infinitesimal operators of Markov processes [13]. Certain considerations
for the derivation of this formula will be given below.
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Taking account of (2.15) and (2,18), we have

dv, dM [v]
7 =M [T /x01 y.]<— k2p(t)

Integrating and taking into account that v, 20 for all ¢ > ¢, we obtain

& POASIT (o= vl 20 ) (2.21)
ts
On the other hand, taking account of conditions (2.16) and (2.20) as well
ﬁs the boundedness of the derivative d¥(7)/at 1in the domain 2.2), we will
ave
aF, dM [F] . [
7=MT Ty, Yo | > m Z’T_p(t) — Kp (1)

Integrating this inequality and taking account of (2.16), we obtain
lim F, =@ as ¢ - » , which 1s impossible since F. 1s a bounded function.
The contradiction obtained proves the validity of (2.7) and, consequently,
of Theorem 2.1 .

Let us set down the proof of equality (2.18).

Let 1 denote the oyen domain & < |lx|| < # . Let us take the arbitrary
number O < y < i(H - 8 and let us define a closed domaln § by conditions
S=0+v<llz|<H—W

Let us calculate the increment Ag, in the function

‘Pt = M [(P (tv Z* (t)7 y* (t)) /Z‘., y0]~
To do this, let us consider the followlng incompatlble events which generate
a complete group.

The event 4 , the solution {x*(z),y*{t)] 1s not terminated at any point
of the time interval (t,,t], whereg* (f) = z (1) & S.

The event B , the solution {x*(¢),y*(¢)} 1s not terminated at any point
of the time interval (t,,¢] but z* (1) = z (1) & L\.S.

The event (¢ , the solution {x*(z),y*(t)} terminates at a certain time
T & (ty, {]

Then we will have {for a¢ > O)

AQ, = Qi — G = M (@ (t 4+ A) — @ (1) | zg, Yo Al +
+ Mg+ A) — @ (8) /2y, yo, Bl + M @ (t + AD) — @ (1) / 7, %0, €] (2.22)

Let us estimate each of the terms. The right-hand sides of Equations
(1.1) satisfy the Lipschitz conditions, hence with the compliance of condi-
tion 4 1t 1s possible to indicate so small a value of At , that the solu-
tion {x*(t),y*(¢t)} will not terminate even in the time interval (t,t—fAtg.
Then applying the formula of repeated mathematical expectations {([5], p.40
we will have

Mo+ A)) —q (1) [ 7, yo, Al = M [M [p (t + At, =z (t+ A1), y(t+ A) —

3

—¢tz (), yz@)=8ES, y@ =

dM
=NEY/xy 9y Al = M li% / Zoy Yoy A:‘ At + o (A1) (2.23)

The estimate ( ¥ 1s a certaln constant)
| M [@(t+ At) — @ (t) / x4, yo, B] | < KALP {x* (t) E L\ S/ 24, Yo} + 0 (AL) (2.24)
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1s valid for th: second term on the right-hand side of (2.22).
Finally, it is clear from the definition of the function ¢(z) that

Mlp@+ At)— @ (1) / %, %, C1 = 0 (2.25)

Hence, it follows from the estimates (2.23), (2.2%) and (2.25) that the
function @, = M [ (¢) / x,, y,] 18 continuous on the right in ¢ wuniformly in
the domain ¢t > t, and, consequently, it 1s continuous in this domain. Now
taking into account that

limP{x*(t)EL\S/xo,yo)=0 for v — 0
we obtain the equality (2.18).
3. As an example, let us consider the second order equation
"+ azx’ -+ br =0 (3.1)
which 1s equivalent to the system
z =z, 2= — bxr — az (3.2)
Here a(y) and b(y) are known bounded functions of the variable
and' y(¢) describes a homogeneous Markov stochastic process with a finite
number of states F{y ,...,y,} , the elements of the transitlon matrix
piy(At) are given within the time a¢ by Formulas
pij () = ay; At 4 o0 (A1) (i), a;;=comst, i,j=1,..., r) (3.3)

Here p,,{a¢t) 1is the probability of the change in values y, -y, during
the time Az .

It 1s known that compliance with the 1nequalities a>0 , p>0 will be
the necessary and suffilcient condition for stablility of the system (3.2)
with g = const and » = const 1in the determined case. Let us assume that

b{y) >0 tor yEY (3.4)
Let us introduce the notation
a(yk) = (l]lw b(yk) = bk>0 (k = 17 LS | I‘)

Now, let us consider the positive definite function
1
v(x, 2, k) = x2* -+ — 22 3.5
2 7 ] bk ( )

To evaluate gm{v]/dt Dby virtue of Eguations (3.2} at the point {x,z,k}
let us use the ecuality ([11], English version p.1229)
>

dM (o) _ v 4 dv

= = b — )+ E o lo(z, b ) — vz, 2, ] (3.6)

isk

After some transformations we willl have

r
HLIA:_ZZ{.Z_“!:_ ! (J__L\)ak.} 3.7)
di 4 S \b b Y

Let us now require compliance with conditlons

-

2, vt 1

5 (_b.*—”bm)akj>0 k=1,...n (3.8)
k j+k J ko

Then dMTD]/Ht will be negative, 1t may vanish on the line z = O . Let
us construct the function
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Flx, z) = — 22 (3.9)

Then a domain ¢ contailning the line z = O may be indicated such that
M[F;/dt will be positive definite in this domain ¢ by virtue of Equations
3.2) since for z =0

dM [F]
S = bt >0

Thus for the asymptotic stability in probabllity in the large for the
system (3.2), compliance with conditions (3.4) and (3.8) 1s sufficient., It
1s seen, in particular, from these conditions that the asymptotic stability
in probability in the large may hold even when certaln of the possible values
of a, will be negative or zero.

The author 1s grateful to N.N. Krasovskil who proposed the topic and
expressed a number of valuable comments.
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